Spending any resources trying to colonize another fucking planet, while we continue to render ours uninhabitable is so fucking stupid. How about we re-learn how to live in balance with natural systems here, and then try and terraform another planet from scratch?
To me, colonizing another planet is not about expanding or moving the human race somewhere else. It's a backup plan. Right now, our entire species exists all on this one planet. There is a non-zero chance that we could all be eradicated in an instant by a sufficiently large asteroid or comet, or by nuclear war. There is no backup for the human race or any other species on earth. Once we have a colony, we greatly increase our likelihood of surviving the end of the world. I think that's worth investing in, and we should bring as many species with us as possible. For all we know our planet may be the only oasis of life in the galaxy or even the universe. Didn't you think we should have a backup?
Do we actually know how to build a self-sustaining colony? Last I heard, we still had fundamental science and engineering questions to be solved even if we suddenly had an unlimited budget.
Things that come to mind include building a sustainable closed ecosystem, figuring out a long-term power source (is there uranium on Mars? Nuclear reactors run for a long time, but we can't rely on fresh fuel rods being shipped from Earth), and planning for enough industrial base that things like mining the necessary uranium, digging tunnels, housing construction, etc aren't colony-ending problems.
The same argument existed since the beginning of space exploration, if we, as a species would have heard those arguments, we wouldn't have satellite today, and all the other advances space exploration brought.
We haven't tried to colonize anywhere though, and arguments against colonization are still relevant. The advances you mention all happened without attempting to colonize anywhere.
I once met someone who said that it's a pipe dream to think we could have equality between races before we had equality within the same race, and that we should make sure that there aren't any poor white people before we start worrying about PoC.
These two projects build on each other. Furthermore, each has a minimum time that no amount of researchers working together can push us below. To say we shouldn't do one because we haven't done another only serves to reveal your ignorance.
Hey I like SciFi too, but we have pressing issues right here on the only planet we know for a fact that can support life. If we get that fixed, we have until the sun explodes to figure out terraforming other planets. The bottom line is that one issue has a looming deadline, and the other does not. It's a misallocation of resources to entertain the latter before solving the former. Reminds me of a Vonnegut quote I read the other day: "another flaw in the human character is that everybody wants to build, and nobody wants to do maintenance."
In the 1990s solar flares were a known problem we've yet to solve. Without the earth's magnetic field or eleven feet of concrete, a CME bakes astronauts crispy golden brown.
With the moon shots, we just timed them with solar minimum and hoped to get lucky. But instead of a couple of weeks, a mars shot is nine months in space. So we're going to need some new materials with which to make our crew compartments CME proof.
And this is one of hundreds of problems we need to fix before we can send people to mars. It's going to be a while.
That's why I think Venus is in some ways easier than Mars. It's got a magnetic field just like Earth which offers a ton of protection from radiation. Of course, cloud cities are a completely different challenge though.
If you haven't noticed, the space stations we do build require international cooperation and are basically just a bunch of rocket sections stuck together. The ISS, in all of its glory, took years to assemble and has some serious design constraints.
A project of that magnitude would require lots of highly specialized parts to be launched into orbit first, or, we somehow manage to build an entire fabrication facility in orbit where it can process raw materials.
The concept of a rotating ring is simple. Developing the means to build it is hyper-complex.
You don't have to build a whole ring. You just need a boom and a counterweight.
I guess the hard part would be that a truncated-circle-sector-shaped room is more awkward to launch than a rocket-section-shaped one of equivalent usable space. (Also, you need a tube and a ladder down to a docking port at the center of mass, because spaceships can't line up with a target swinging through an arc.)
Not THAT complex. They already have several prototypes they're planning on testing. They won't be giant rotating stations, but rooms of a few meters across. It doesn't take much rotation to get useful amounts of g's.
basically just a bunch of rocket sections stuck together. The ISS, in all of its glory, took years to assemble and has some serious design constraints.
I mean it sounds simple, obviously doing that we be a ton of work, but it seems very feasible. And doing that would be an incredible starting point for space industry. From there, we could send out automated probes to capture trojan asteroids from earths orbit and launch them into lunar orbit for collection. We could even put them in a non stable orbit that bleeds off orbital speed and eventually they bleed off enough to land while staying in almost one piece depending on the type of asteroid.
“You can’t protect them from galactic radiation using shielding, but as we learn more about renal biology it may be possible to develop technological or pharmaceutical measures to facilitate extended space travel.”
If you're asking about the shielding, probably the mass required for materials that are generally used for radiation shielding. If the craft is built terrestrially, the amount of energy necessary to launch would be insurmountable with current chemical rockets.
Now, if the craft were manufactured in space (and forming of the shielding materials were practical in low-G), the problematic materials could be shuttled up over time, making it a non-issue. This would, of course, also mean that the craft could not be used for re-entry and would require landing craft. And there's all the logistics challenges (supplying air, etc). Probably though the direction that will be necessary for long-distance space craft.
That’s the benefit of setting up a permanent orbit for transit. You could make a much bigger ship with more shielding and more comfort for a long haul, but only need to get it up to speed once. Then you just need smaller shuttles with good acceleration on both sides
I wonder how much energy would have to be generated to have an active “shield generator” that would positively charge the hull to deflect the solar radiation from it?
Maybe they're looking at SLS numbers and ignoring reusable rockets like Starship? Perhaps it would not be feasible to move a sufficient mass of shielding into orbit using the $2 billion per flight, one time use SLS.
This kind of thinking is the reason we even have to think about moving to Mars as opposed to improving the life on this planet. People seeing themselves as gods and enslaving every creature and thing in sight, resulting in catastrophes like global warming and extinctions.
Another article that can't even bother linking to the actual research
Astronauts have an unusually high rate of kidney stone formation, with 1-year post-flight astronauts experiencing incidence rates of 2–7 times that of pre-flight estimates, and in-flight risk estimated to be double that again5. This is of mission critical significance, one Soviet in-flight renal stone episode nearly caused a mission termination due to the severe symptoms, but was relieved by spontaneous stone passage by the cosmonaut just before an urgent deorbit was initiated
It has been demonstrated that spaceflight associated changes in urinary biochemistry favour kidney stone formation
the kidney is an exquisitely radiation sensitive organ; it is the dose limiting organ in abdominal radiotherapy
Our data robustly and orthogonally supports tubular remodelling occurring in microgravity with and without GCR (Galactic Cosmic Radiation). This is highly likely to have functional consequences, as tubular remodelling does in other scenarios39.
Renal remodelling in microgravity (possibly related to the cephalad fluid shift) may therefore be a primary event that causes subsequent dysregulation of serum and urine electrolyte homeostasis. This is supported by the prompt return to baseline of humans on return to terrestrial gravity.
Sounds like GCR is a big concern to Renal functionality due to it's sensitivity to radiation, but they don't think it's the main driver of astronauts subsequent renal dysfunction. Interesting stuff.
Gee... it's almost like all the overmoneyed people who tried convincing us that "colonizing" space was (somehow) a "logical" thing for humanity to do is far, far too privileged and spoilt to realize just how ridiculously fragile humans are outside of the ecosphere we spent millions of years evolving to survive in.
But hey - I still say we should fire a few billionaires off in a spacecan on a one-way trip to Mars just to be sure...
There are dozens of astronauts who've spent years in the space station. Granted that's across multiple missions, but the gravity on Mars might end up being enough to mitigate the damage.
I'm more concerned with the "artist's impression of a Mars colony" being a few low res shapes placed on top of what is very obviously a close up of a few square feet of Martian surface. Have they already outsourced chat GPT's image gen to even cheaper models?
Did you read the article? The research states that based on their findings the astronauts would need dialysis on the way back. How would mars gravity help with that if the damage is already done to the kidney when you get there?
Dozen(s) is not a large enough sample size for long term space impact. Even less, as you've noted, because there are even fewer consecutive streaks.
If you are interested in a sober discussion of some of the known and unknowns surrounding colonizing mars, I would recommend A City on Mars by the Wienersmiths.
I'm wondering how depletion of the ozone may contribute to kidney failure. Seems we have high incidences of ESRD in my tiny community, but then, plenty of unhealthy diets abound, resulting in diabetes, high BP (which absolutely causes kidney failure, left untreated, and many of my neighbors struggle), bad teeth, substance use disorder, etc.