Ingesting gasoline is deadly in far smaller doses due to something called hydrocarbon pneumonia. My dad very nearly died as a result of having a tiny amount get past his throat while siphoning gas to a small engine's tank.
If you must siphon gas, go buy a cheap "pump siphon" from Canadian Tire.
This is what I was referring to. There are a number of variations on the theme.
If you are really in a pinch:
Feed a length of hose into the source until only a small amount is left clear of the liquid.
Put your thumb over the exposed end, or otherwise make the end as close to airtight as possible.
Rapidly pull the hose out of the liquid, moving the end down to the destination container. The end must be below the top surface of the source, the further the better.
Release your thumb/seal. If you've done it all correctly, the hose will be nearly filled with liquid and enough of it will be below the surface of the source to start the siphoning process.
If the source liquid is too far below the opening for this to work with the length of hose you have, you can manually pump it far enough to start a siphon, by rapidly submerging and lifting the hose while alternating the closing of the top. Open top while submerging, closed top while lifting. You have to push down faster than what gravity pulls the liquid back down. Ideally, you're lifting fast enough to get some help from the liquid's own inertia when you reverse course.
Ingesting gasoline is deadly in far smaller doses due to something called hydrocarbon pneumonia. My dad very nearly died as a result of having a tiny amount get past his throat while siphoning gas to a small engine's tank.
If you must siphon gas, go buy a cheap "pump siphon" from Canadian Tire.
This only compares the risk of death, not other health problems. Also, gasoline is way more readily available in pure form than most other substances, and nobody would drink it voluntarily.
More than 1200 mg of pure THC, or 1200mg of cannabis leaves?
Those aren't even remotely the same thing, in the same way that 12oz of beer and 12oz of everclear are very different, or 1g of pure nicotine is very different than 1g of tobacco leaves.
Not to mention, LD50 is about a single dose. There's a big difference between taking one shot an hour for 16 hours straight, and chugging 16 shots in one go.
Looking at the wikipedia page for some of those, it seems to be intravenously.
For example, Botox (the last one): “A toxin is 1.3–2.1 ng/kg intravenously or intramuscularly, 10–13 ng/kg when inhaled, or 1000 ng/kg when taken by mouth”
It doesn't take into account so many things, and it's extremely misleading.
Most of these chemicals don't ever appear in products in their pure form, so there's so much here that simply isn't relevant.
There's also consideration here that everything is by weight, and it makes sense to create that as a standard, but many of the pure forms of these items are far more dense than you would expect. One that stands out is uranium. A gram of it would be incredibly small, approximately 0.05 cm cubed. 1 lb is around 1.45" cubed (for my American friends).
So it would be an insanely small amount. Meanwhile water is insanely light by comparison. While also safer per gram, so it's an insanely large amount of water before any damage can be done while a relatively small rock of uranium can tear your DNA apart.
The whole chart is wildly misleading. It might be accurate, though, I have no idea if it is, but the fact is that it makes it seem like normal every day compounds like vitamin B will kill you at lower doses than uranium. While technically true based on weight, it makes uranium seem relatively safe by comparison and bluntly it's not. Even the smallest amount of pure uranium, which this chart would regard as "safe", would cause you to become incredibly sick for a very long time.
I hope nobody gathers "new" information from this chart and decides to do something stupid; but honestly, there's a lot of idiots in the world, and if anyone is that dumb, I wonder if the average intelligence of the planet might increase a bit.
I look at that and I'm not sure that's right either. Maybe if you took concentrated nicotine extract (pure) and drank it, then yeah, it could become lethal.
I don't think anyone can smoke enough cigarettes or vape enough to reach a dangerous toxicity level. I'm pretty sure you'd pass out long before reaching a fatal dose. So the only way you could get to that point is to either inject, ingest or otherwise absorb a lot of nicotine all at once. The usual delivery methods (via the lungs) would probably not work for this. I suppose if you rigged up a continual tobacco burner and hot boxed an area with smoke containing nicotine (either vapor or smoke from burning it), maybe? Or if you slapped on a few dozen nicotine patches after smoking a few packs and went to bed?
The only other way I can think of to get that much nicotine in you is to buy high concentration vape liquid and drink it; but I'm pretty sure your body would simply vomit it back out and you'd survive. I'm sure it wouldn't be pleasant, but it wouldn't be fatal.
Cocaine on the other hand.... I don't know enough about, but I'm sure people have OD'd on it, so I'm sure there are ways.
I work with WiFi professionally, so I have a pretty good understanding of radio waves from that. On top of that, I'm a radio hobbyist, so I gathered a pretty good understanding of electromagnetic waves and how they operate... Mainly in the context of getting them from A to B successfully, but the physics behind it does not change regardless of frequency.
While all radio waves can dissipate as heat when absorbed by an object, the wavelength of that signal affects how small of an object it will interact with. Lead is a good example, since it's a dense lattice of atoms and can interact with most electrical and magnetic fields. Radio waves have a hard time penetrating even a small layer of lead because they're usually too large of a wave to fit between the atoms. At a certain, very high, frequency, lead gets less effective, and only by making that lead layer thicker and thicker, basically putting the randomness of atom arrangement in the path of the wave, can the signal be stopped.
When a high frequency wave interacts with flesh, like a person, it will usually penetrate a distance then be absorbed into the material, this is the basic principle that allows x-ray imaging to work. The more dense the material (bones vs muscle and organs and such), the more is absorbed, and you get a dark spot on the resulting image. I won't get into the development of the images, because they're usually inverted, that's a function of photography and how pictures work.
Taken to the extreme, higher and higher frequency signals, like uranium produces, goes even further, interacting with the atoms that make up your DNA, and destroying them. It's a gruesome process and it takes a long time before the symptoms of radiation appear, and a very long recovery (or death) in most cases. With uranium, you'd die from radiation long before the toxicity of the uranium can kill you, even if you're "only" taking .
Knowing as much as I do, radiation at this level is scary. It's silent, with no visible indication that it's happening, and it will kill you dead without any indication it ever existed. It always humors me when people take up arms against some new wireless technology where the principle frequency is under 100Ghz, and people are so afraid of it giving them cancer. The lightbulbs in your house are more apt to give you cancer than 5G or whatever. Light is an electromagnetic wave, the same as the radios in the 5G towers, but light is in the terahertz range, over 500x higher frequency than your wifi. Above that, in terms of frequency is UV-A, UV-B, etc, up to x-rays, and on. Above x-ray, is all the radioactive emissions from uranium, plutonium, etc. Literally thousands of times higher frequency than the evil 5G. EM only becomes ionizing (aka, dangerous) around UV-B, which is why you should always wear sunscreen.
We (humans) only use higher frequency EM in the context of medical use (cancer treatments, x-rays, etc) in highly controlled environments, and for use in power plants and bombs. I'm sure some industrial uses exist too, but I'll just skip over that since it usually has the same controls as medical uses. The only other place I know of that we use radioactive material at all is in smoke detectors. We limit it, we regulate it, we keep the stupid public away from it, because they don't know the danger of such substances.
It really should have been theobromine, from chocolate. It's 1000mg/kg via oral ingestion.
This is what kills dogs, as they're more susceptible at 200mg/kg. They've gotta really pack in the chocolate first to reach that, though. And it had better be dark chocolate for its higher levels of theobromine. Pure cocoa has about 2.1% theobromine by weight.
You're confusing 50% lethal dose (medical property of a substance in relation to the body) with death rate (property of a death cause, obtained statistically from a population at a specific time). This is pure medical data which still may be slightly inaccurate, but you can easily check relevant scientific papers for their estimate of the LD₅₀. I think all values presented here are correct within a factor of 2, unless you find a reputable journal stating a very different result. Each substance is available in different concentrations and humans’ exposure to them also varies. You can get lots of pure water, sugar or gasoline easily but not a gram of viruses. Nobody would voluntarily consume a substantial amount of gasoline but nanograms of viruses come and go in the air all the time.
It is somewhat misleading to group poisons, radioactive isotopes and viruses as they work in very different ways, but the gist is correct. And yes, the LD₅₀ is still a statistical estimate dependent on the humans studied, but not on society etc. like the death rate.
Edit: some substances will be ejected by the body relatively fast (water), some bioaccumulate (heavy metals) and some "biomutiply" (viruses). This is why you haven't died despite having drunk lots of water.
It is somewhat misleading to group poisons, radioactive isotopes and viruses
Far as I can tell there aren't any viruses in there? There's a few bacterial toxins, but they're… well, toxins.
Also, the grouping isn't misleading. Not only is eg. plutonium fairly toxic (because it's a heavy metal) in addition to giving off ionizing radiation, but calculating an LD50 for something doesn't require it to be toxic, just that some dose of it kills. There's some µg/kg ingested (or inhaled or whatever) dose of polonium that will kill 50% of a study animal population dead, regardless of what the mechanism that kills them actually is
I legit cannot imagine consuming 1g of THC let alone 1g/kg, you'd literally be eating thousands of gummies if you're doing edibles (10mg seems to be the strongest edibles I can get) which would be really expensive, rough for a 70kg person would be nearly 9000 10mg gummies which are like $4 cad each, would cost $36,000.
I guess you could do it, but practically, no one is going to do that much
It's probably all correct, but super misleading. There's probably no way to overdose on THC other than drinking loads of highly concentrated oil. Just like there's no way to overdose on LSD, since it gets taken smaller doses.
You consume grams of salt, milligrams of meth, vitamin D, …, and micrograms of acid.
So the important part is “how close is the usual dose people take to the lethal dose, and will your body rebel before you get there (e.g. it's hard to eat that much salt or drink much water)” or in other words “how likely is it to accidentally overdose”.
It's not "super misleading". It's just very simplified. It's an infographic, and inherently lacks nuance. The creator tried with loads of fine print both before and after the pictures, but who reads fine print, right?
The rest of your points are correct, especially the likelihood of accidental overdose. And the OP of this thread is… I'm gonna be generous and stay they are childish. Hopefully they learned something from all of the responses here
Most of the numbers used in this data are also extrapolated from studies using rats and mice so the direct applicability to humans is uncertain at best.
Keep in mind: a single extra strength Tylenol is 500mg. A standard dose for a headache is 2 pills, or 1000mg.
Weed gummies come in doses of 1mg to 100mg. 1mg is a microdose people might take for mild pain or stress, while 50+mg is a dose for cancer patients often take. A standard dose for occasional recreational highs is 5mg; they recommend first timers start at 2.5mg.
LD50 compares things by weight, rather than dose. By weight, THC is slightly more toxic than acetaminophen. But in terms of the number of therapeutic doses it takes to kill you, it's way, way safer.
Yes, I came here for this conversation. What's the ratio of effective dose to LD50 again, because that's typically what matters. That's where cannabis and ethanol are in totally different categories. And how high do you need to get before dying from LSD?
I think the reason this chart doesn't feel right is because for substances we regularly ingest, a more useful scale would be the ratio of the lethal dose to the effective dose, since we use a different mg amount to get high on THC than we use to lower pain on acetaminophen
This is why grapefruit is so dangerous for so many medicines. Those medicines take bioavailability into account and can be a massive dose in some cases. Grapefruit keeps the same mechanism that lowers effective dosage busy, substantially increasing the effective dose - straight into overdose territory in some cases.
Aye, I've always liked the ratio better. It really puts into perspective how fast and loose some of our entertainments are. Compare the health warnings on OTC drugs like tylenol/acetaminophen/paracetamol to the bare minimum labeling of alcohol, yet alcohol's equivalent (or much less, in some estimations) to the painkiller.
Death rate is society-dependent. If we only paid with lead coins and never washed our hands, cases of lead poisoning would skyrocket even if the element and our bodies remained the same (and so would LD₅₀). Thankfully, our society knows about the danger and limits the intake of lead to small amounts and/or small concentrations.
This looks like a quite useless guide. All these substances appear in vastly different doses in the environment, so it in no way shows what is more likely to kill you or accurately shows what you are supposed to be careful with.
Not possible to get 3-3.5 grams (based on bodey weigth) of d vitamin from the sun. Since the body produce about 25 micrograms in 10-15 minutes during peak summer. And would just flush the excess. To be leathal it would need to be in one single dose.
Exactly. Gasoline, for example, is remarkably non-toxic, but it will cause instant chemical burns to your throat and lungs, possibly killing you far below the (chemically) lethal dose.
Methanol will turn you blind at a quarter of the listed dose, and those two are just from the top of my head.
I wonder how they came up with the LD50 of all those materials, like THC and LSD. Is this based on theoretical calculation, in vitro tests, or on a (assumably) very small sample of known deaths?
Or aspects like arsenic staying in your body a very long time, or the fact that LSD is psychoactive in microgram doses, so you'd need thousands of tabs to die.
Tylenol is easier to overdose on than NSAIDs. I really don't think this guide is accurate. I'm really questioning the placement of cocaine and especially ketamine. Vitamin D from the sun? Lethal? I don't believe black widows are that venomous, either. How are they even measuring this? Cocaine will give you a heart attack, Tylenol will shut down your liver, venom acts like an infection... are they basing lethal dose on how much it takes to cause some kind of fatal reaction, or under a controlled administration with a defined "fatal dose" based on a specific measurement, like damage to a human cell?
LD50 is usually determined using rodent studies. How much Vitamin D causes an overdose in half of a population of mice?
The dose makes the poison.
And with drug safety, in practice LD50 is less important than how close a therapeutic dose is to a lethal one. If a drug takes 2g/kg to kill you but you need 1g/kg to work, that's way more dangerous than one that takes .02g/kg to kill you but only needs .0002g/kg to work.
1 IU is 0.025 μg, or 0.000025 mg. 50k IU is 1.25 mg.
I buy bottles of 5k IU vitamin D pills. Each bottle has 90 pills. That's 11.25 mg of vitamin D per bottle. I'd need to take well over 200 bottles of these pills to have a 50% chance of dying.
Yes, an objectively small amount of purified vitamin D will kill you. But it's quite safe in practice because the environment only has objectively tiny amounts of the stuff. Even high dose pills contain a tiny amount of the stuff.
It really takes that much gasoline to be lethal? You mean to tell me less THC is needed to kill you than drinking gasoline? It's almost 10 times as much!
I'm pretty sure the figure for heroin is on the high side too. Most people won't have a tolerance, and a lethal dose would be quite a bit lower than this.
I assume this is talking about pure gasoline. The stuff that you get out of the pump is anything but pure. It contains benzene, hexanes, and other really nasty chemicals that will kill you quickly and slowly (e.g. cancer)
Depends on the isotope, of course. There are different ways it can hurt you.
If you put together a critical mass of ²³⁵U, it undergoes fission and you die in seconds without needing to ingest it.
Naturally ocurring uranium (²³³U-²³⁸U, mostly ²³⁸U) has a half-life of billions of years, so it's very weakly radioactive. It would take a lot of it to harm you from decay radiation. Or very little if you pick a very unstable synthetic isotope outside the 233-238 range (but every element "has" such radioactive isotopes, though not in nature).
Uranium is chemically toxic, which is whal will kill you if you ingest a small amount of a common isotope.
If you've got more than 52 kg of uranium 235 on your hands, I would be alarmed to learn you didn't understand how criticality worked. Although now that I think of it, there's probably an awful lot of people who indirectly handle that much when they move around a nuclear warhead and most of them probably only had a single lecture on the concept.
The thing that always blows my mind is just how freaking dense uranium is. A sphere weighing 52 kg is only 17 cm across.
I think they are referring to Uranium with natural isotopic abundance. Which is complete bullshit when you put a picture of a nuclear power plant behind it – which in most cases can not function with the natural isotopic abundance (heavy water reactors being the exception, not the rule).
What's the denominator here? Like water is toxic at 90g/1kg, what's the other 910g? Because I definitely drink over a litre of water a day and I'm doing fine.
If you weigh 100kg, drinking 90*100g=9kg of water produces a 50% chance of fatality. The definition of LD50 requires the dose to be given "all at once", and quite frankly, you would not be able to drink 9 liters of water all at once. LD50 becomes a lot less meaningful for anything where you would need an extreme concentration of the substance--e.g. THC is difficult to acquire in concentrations compatible with fatal overdose--or where consuming it at such quantities is simply infeasible.
People often say "consumed rapidly" but that phrasing doesn't really solve this problem with LD50 as a measure. Basically LD50 is meaningful near the bottom of this chart, less so near the top of this chart.
I'll note that another problem with LD50 is that it doesn't take into account serious harms that can occur with lower dosages. Drinking any amount of gasoline is likely to lead to serious brain damage, for example.
Everyone knows the LD50 is a binary condition! Either you live or you die! That's why I always dose just under the LD50 to make sure I never suffer any consequences.
I believe it's body weight, so if you weighed 200lb (~90kg) you'd have to drink 8100g of water to possibly die and you have to drink it fast and not pee it out. There was a woman several years back that did die from this, a radio station did a contest "hold your wee for a wii"
It's complicated. Short version, over a small amount of time.
In the case of water, how it kills you is by diluting your blood, basically. Your kidneys will be working extremely hard (and quickly) to empty out the excess water, so for the most part, you've got to drink much faster than your kidneys can work.
That said, it's not just speed - other stuff gets cleaned out with your urine, like certain vitamins and such. Drinking excess water over a long time, but significantly more than what's on the chart, will drain you of certain nutrients / electrolytes, and that'll screw you, too.
Drinking sports drinks in that quantity could actually sidestep that particular problem, drastically raising the amount of water you can take in.
One way or another, though, while it's possible to hurt or kill yourself from drinking too much water, you have to bring it to some serious extremes and your body should be vehemently complaining during this process.
If ever you think you're doing something extreme and might possibly be slightly risky in this regard, just drink some electrolyte heavy stuff instead for a while - Gatorade, Powerade, etc. Then your only risk is basically outrunning your kidneys and your stomach should really be making you throw up if you try that.
Uranium is pretty toxic, just like a large part of the periodic table. As long as we’re talking about the usual isotopes, the toxicity will get you long before the radiation does.
I think the per kg is important there. 192mg/kg of body weight is the lethal dose. So for example a 100kg person would need 19,200mg of caffeine to be a lethal dose.
To edit: that's not to say that the lethal dose in this picture is wholly accurate. Caffeine has been known to cause cardiac arrest even in lower doses.