A space elevator on Ceres (with today's tech) and the gravitational assist of Jupiter for returning payloads back to Earth, could allow us to start mining the asteroid belt costing just $5 billion.
Here at UT, we’ve had several stories that describe the concept of a space elevator. They are designed to make it easier to get objects off Earth and into space. That, so far, has proven technically or economically infeasible, as no material is strong enough to support the structure passively, and i...
Elon is the epitome of an Inner. Holden may have been born in the well, but at least he thought of himself as a Belter and worked towards their interests. Elon would be no more of a Belter than Jules-Pierre Mao. Just because they leave the well doesn't mean they're a Belter
All deep space mission proposals like this conveniently ignore the unsolved problems of long term radiation exposure and food supply, among many others.
Once we're at the technological level of mining asteroids, I think food supply and radiation shielding will be comparatively small challenges. Food can be grown wherever there is sunlight, and radiation can be mitigated by placing sufficient matter on the exterior of the habitats.
Estimates for Starliner are currently at about $2.5 billion, with multiple test flights. Costs for the first launch of SLS was close to $5 billion. NASA is not where you go to see how little something could cost.
While I kind of agree in principal, you cant compare it to organisations who can only claim hype. So until these "more efficient" corporations prove it, it is just more hype and baseless claims.
Well this is an insane plan. The most obvious problem being the fuel required to round trip materials collection. Next, there's how to decelerate the payload into Earth's atmosphere.
Really, I think the biggest one nobody talks about is: what are the negative effects of adding more mass to Earth over time? If you're talking about mining an entire dwarf planet and bringing that mass back here, then that would have to have some negative consequences.
Right now, the Earth is losing mass at about 55 000 tons per year. Yes, losing. About 100 000 tons of hydrogen and helium escapes the upper atmosphere, partially offset by roughly 45 000 tons of dust and meteorites getting scooped up along our orbit.
Considering this has been happening for millions of years, I think we're quite safe from affecting the Earth's mass and orbit within the span of even centuries.
But it's much more likely that the majority of material mined and processed in space will not be coming down to Earth. It's much better put to use in orbital construction, or shallower gravity wells like the Moon and Mars.
You're entirely right that getting to the rocks, and getting the mined stuff to where it's actually useful, are gonna be a problem. Maybe we'll finally get some nuclear thermal engines, cause the shite ISP of chemical rockets is really insufficient for these trips and ain't no one wanna wait on the gravity assists.
An interesting thought that makes me ask a few questions.
How much of that dwarf planet would be in scope to return? I guess my completely ignorant suspicion is that it would be a small volume of highly valuable minerals, or minerals destined for space anyway.
Also, what about the mass we are moving off world today? Have all of our satellites and rockets and other space bound craft resulted in any measurable change to earths place in the solar system? I would imagine some leave only temporarily, but how much mass do we permanently shed?
I asked the same thing to a panel of JPL nerds years ago, and the answer was basically "We don't definitively know." , but some facts I hadn't thought about came out of it.
Earth's gravity technically doesn't change by any measurable amount in relation to the sun unless we send mass far enough away to not interact with Earth gravity anymore, and the vast majority of everything we've sent up is still in orbit.
The distance to the Sun can't be measured in any effective way directly, so they essentially measure the distance of Earth to thousands of other objects in relation to us and the Sun to come up with a usable number
The effective Gravity of Earth can't be reliably measured before the first instrumented measurements were taken at some point (I can't find when this was, but early 2000's I think). They can only tell from the first measurement if there are effective changes.
Knowing all of this, it seems bringing back millions of tons of mass to Earth is going to change SOMETHING.
What's even out there? Dirty water? The same minerals that can be found on earth, just impossibly far and difficult to get?
What does that $5B get you for the trouble? Legislation for space crews, space work, and probably some rare medals like iridium or platinum. What's most likely expected is weird grade silica and some ferrous metal we already have access to here in decent amounts. It's not worth it.