Proponents of AI and other optimists are often ready to acknowledge the numerous problems, threats, dangers, and downright murders enabled by these systems to date. But they also dismiss critique and assuage skepticism with the promise that these casualties are themselves outliers — exceptions, flukes — or, if not, they are imminently fixable with the right methodological tweaks.
Common practices of technology development can produce this kind of naivete. Alberto Toscano calls this a “Culture of Abstraction.” He argues that logical abstraction, core to computer science and other scientific analysis, influences how we perceive real-world phenomena. This abstraction away from the particular and toward idealized representations produces and sustains apolitical conceits in science and technology. We are led to believe that if we can just “de-bias” the data and build in logical controls for “non-discrimination,” the techno-utopia will arrive, and the returns will come pouring in. The argument here is that these adverse consequences are unintended. The assumption is that the intention of algorithmic inference systems is always good — beneficial, benevolent, innovative, progressive.
Stafford Beer gave us an effective analytical tool to evaluate a system without getting sidetracked arguments about intent rather than its real impact. This tool is called POSIWID and it stands for “The Purpose of a System Is What It Does.” This analytical frame provides “a better starting point for understanding a system than a focus on designers’ or users’ intention or expectations.”
I not disabled, and I've had the same problems with HMO healthcare.
Those organizations drive decisions based on statistics, not the individual. I've seen my doctors working to find ways describe/categorize my problems so they could justify the treatment they felt was most appropriate (only after working through numerous doctors in the organization - one actually said "Well, I guess you're just going to have to learn to live with the pain").
Walking into an independent doctor office is completely different - they're quick to work toward a solution, and move to a different approach when they see things aren't improving. Because they don't have to justify their actions to a risk/cost-management board.
Interestingly, the HMOs don't hesitate to do surgeries. Never had any pushback there, even for things with moderate risk, but relatively low need.
That kind of analysis is done all the time. But, even if we can collect all the relevant data (big if), the methods required are difficult to interpret and easy to abuse (we can't do an RCT of being born female vs male, or black vs white, &c). A good example is the proliferation of analyses claiming that the gender pay gap does not exist (after you've 'controlled' for all the things that cause the gender pay gap).
It's not easy to do 'right' even when done in good faith.
The article isn't claiming that it is easy, of course. It's asking why power is so keen on one type of question and not its inverse. And that is a very good question, albeit one with a very easy answer. Power is not in the business of abolishing itself.
Proponents of AI and other optimists are often ready to acknowledge the numerous problems, threats, dangers, and downright murders enabled by these systems to date
Edit: I see from the comments this is about insurance carriers.. in that case it's not tinfoil hat at all. The wording I quoted sucks though because it's not the AI doing it any more than it's the hammer that drives a nail sideways.
No idea what your post, before or after edit, is trying to say. But the subject of your quoted sentence is "proponents of AI" not "AI", and the sentence is about what is enabled by AI systems. Your attempt at pedantry makes no sense.
If you're suggesting that it is possible to build an AI with none of the biases embedded in the world it learns from, you might want to read that article again because the (obvious) rebuttal is right there.
The systems didn't do anything they weren't told to do. You're correct that it says proponents, but they knew what it was doing and kept doing it because it was giving them the answers they wanted regardless of reality. The AI is still like the hammer.
I'm not really sure what the author is trying to do here. The way he plays with the meaning of words, like "culling the outlier" is literary interesting. But it is also actively harmful to understanding or bettering the issues raised.
"AI" is interpreted as "algorithmic inferences." This paves over any of the technical distinctions between statistics, ML, AI, and neural nets. In the current hype, the term AI is often narrowed down to mean neural nets but the author widens the meaning. In the text, "AI" includes any kind of bureaucratic or rule-based decision-making.
The effect is to transfer responsibility away from decision-makers, organizations, and even society, at large, to a vaguely understood new technology.
I can see that this could be welcome to these decision-makers and organizations. And so it has the potential to attract funding from them. Perhaps that is the point.
any kind of bureaucratic or rule-based decision-making
Human-written rules are often flawed, and for similar reasons (the sole human thought process that 'AI' is very good at reproducing is system justification). But human-written rules can be written down and they can be interrogated. But Apple landed itself in court because it had no clue how its credit algorithm worked and could not conceive how it could possibly be sexist if the machine didn't get any gender data to analyse.
I think you misunderstand. She is shifting responsibility.
But Apple landed itself in court because it had no clue how its credit algorithm worked and could not conceive how it could possibly be sexist if the machine didn’t get any gender data to analyse.