Hello, everyone! I wanted to share my experience of successfully running LLaMA on an Android device. The model that performed the best for me was llama3.2:1b on a mid-range phone with around 8 GB of RAM. I was also able to get it up and running on a lower-end phone with 4 GB RAM. However, I also tested several other models that worked quite well, including qwen2.5:0.5b , qwen2.5:1.5b , qwen2.5:3b , smallthinker , tinyllama , deepseek-r1:1.5b , and gemma2:2b. I hope this helps anyone looking to experiment with these models on mobile devices!
You will need to log-in every time you want to run Ollama. You will need to repeat this step and all the steps below every time you want to run a model (excluding step 3 and the first half of step 4).
Step 3: Install Dependencies
Update the package list in Debian:
apt update && apt upgrade
Install curl:
apt install curl
Step 4: Install Ollama
Run the following command to download and install Ollama:
curl -fsSL https://ollama.com/install.sh | sh
Start the Ollama server:
ollama serve &
After you run this command, do ctrl + c and the server will continue to run in the background.
Step 5: Download and run the Llama3.2:1B Model
Use the following command to download the Llama3.2:1B model:
ollama run llama3.2:1b
This step fetches and runs the lightweight 1-billion-parameter version of the Llama 3.2 model .
Running LLaMA and other similar models on Android devices is definitely achievable, even with mid-range hardware. The performance varies depending on the model size and your device's specifications, but with some experimentation, you can find a setup that works well for your needs. I’ll make sure to keep this post updated if there are any new developments or additional tips that could help improve the experience. If you have any questions or suggestions, feel free to share them below!
Most open/local models require a fraction of the resources of chatgpt. But they are usually not AS good in a general sense. But they often are good enough, and can sometimes surpass ChatGPT in specific domains.
Do you know about anything libre? I'm curious to try something. Better if self-hosted (?)
According to a Youtuber, deekseek (or whatever the name is, the Chinese Open source one) is better than ChatGPT when he tried one simple request of making a Tetris game and ChatGPT gave a broken game while the other one didn't
@[email protected] Depends on the inference engine. Some of them will try to load the model until it blows up and runs out of memory. Which can cause its own problems. But it won't overheat the phone, no. But if you DO use a model that the phone can run, like any intense computation, it can cause the phone to heat up. Best not run a long inference prompt while the phone is in your pocket, I think.
that's not how it works. Your phone can easily overheat if you use it too much, even if your device can handle it. Smartphones don't have cooling like pcs and laptops (except some rog phone and stuff). If you don't want to fry your processor, only run LLMs on high-end gaming pcs with All in one water cooling