Massive time gains with parallelization + optimized next function (2x speedup) by doing the 3 xor operation in "one operation",
Maybe I prefer the grids ^^:
#!/usr/bin/env jq -n -f
#────────────────── Big-endian to_bits ───────────────────#
def to_bits:
if . == 0 then [0] else { a: ., b: [] } | until (.a == 0;
.a /= 2 |
if .a == (.a|floor) then .b += [0]
else .b += [1] end | .a |= floor
) | .b end;
#────────────────── Big-endian from_bits ────────────────────────#
def from_bits: [ range(length) as $i | .[$i] * pow(2; $i) ] | add;
( # Get index that contribute to next xor operation.
def xor_index(a;b): [a, b] | transpose | map(add);
[ range(24) | [.] ]
| xor_index([range(6) | [-1]] + .[0:18] ; .[0:24])
| xor_index(.[5:29] ; .[0:24])
| xor_index([range(11) | [-1]] + .[0:13]; .[0:24])
| map(
sort | . as $indices | map(
select( . as $i |
$i >= 0 and ($indices|indices($i)|length) % 2 == 1
)
)
)
) as $next_ind |
# Optimized Next, doing XOR of indices simultaneously a 2x speedup #
def next: . as $in | $next_ind | map( [ $in[.[]] // 0 ] | add % 2 );
# Still slow, because of from_bits #
def to_price($p): $p | from_bits % 10;
# Option to run in parallel using xargs, Eg:
#
# seq 0 9 | \
# xargs -P 10 -n 1 -I {} bash -c './2024/jq/22-b.jq input.txt \
# --argjson s 10 --argjson i {} > out-{}.json'
# cat out-*.json | ./2024/jq/22-b.jq --argjson group true
# rm out-*.json
#
# Speedup from naive ~50m -> ~1m
def parallel: if $ARGS.named.s and $ARGS.named.i then
select(.key % $ARGS.named.s == $ARGS.named.i) else . end;
#════════════════════════════ X-GROUP ═══════════════════════════════#
if $ARGS.named.group then
# Group results from parallel run #
reduce inputs as $dic ({}; reduce (
$dic|to_entries[]
) as {key: $k, value: $v} (.; .[$k] += $v )
)
else
#════════════════════════════ X-BATCH ═══════════════════════════════#
reduce (
[ inputs ] | to_entries[] | parallel
) as { value: $in } ({}; debug($in) |
reduce range(2000) as $_ (
.curr = ($in|to_bits) | .p = to_price(.curr) | .d = [];
.curr |= next | to_price(.curr) as $p
| .d = (.d+[$p-.p])[-4:] | .p = $p # Four differences to price
| if .a["\($in)"]["\(.d)"]|not then # Record first price
.a["\($in)"]["\(.d)"] = $p end # For input x 4_diff
)
)
# Summarize expected bananas per 4_diff sequence #
| [ .a[] | to_entries[] ]
| group_by(.key)
| map({key: .[0].key, value: ([.[].value]|add)})
| from_entries
end |
#═══════════════════════════ X-FINALLY ══════════════════════════════#
if $ARGS.named.s | not then
# Output maximum expexted bananas #
to_entries | max_by(.value) | debug | .value
end
If nothing else, you've definitely stopped me forever from thinking of jq as sql for json. Depending on how much I hate myself by next year I think I might give kusto a shot for AOC '25
I got a different solution than the one given on the site for the example data, the sequence starting with 2 did not yield the expected solution pattern at all, and the one I actually got gave more bananas anyway.
The algorithm gave the correct result for the actual puzzle data though, so I'm leaving it well alone.
Also the problem had a strong map/reduce vibe so I started out with the sequence generation and subsequent transformations parallelized already from pt1, but ultimately it wasn't that intensive a problem.
Toddler's sick (but getting better!) so I've been falling behind, oh well. Doubt I'll be doing 24 & 25 on their release days either as the off-days and festivities start kicking in.